Determining absolute orientation-dependent step energies: a general theory for the Wulff-construction and for anisotropic two-dimensional island shape fluctuations

نویسندگان

  • S. V. Khare
  • S. Kodambaka
  • D. D. Johnson
  • I. Petrov
  • J. E. Greene
چکیده

We describe an analytical form of the Wulff plot construction procedure and derive a general expression for the surface energy from the three-dimensional equilibrium crystal shape in generalized orthogonal curvilinear coordinates. Particular expressions in Cartesian, spherical polar, and circular cylindrical coordinates are also presented. Corresponding results for a two-dimensional (2D) island on a flat terrace provide relative orientation-dependent step energies within a scale factor k, the equilibrium chemical potential of the island per unit area. In order to determine k and, hence obtain absolute step energies, we have developed an exact theoretical approach, applicable to both isotropic and anisotropic 2D island shapes, relating the temporal change in island free energy to thermal fluctuations about the equilibrium shape. 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute TiN(111) step energies from analysis of anisotropic island shape fluctuations.

In situ high-temperature (1165-1248 K) scanning tunneling microscopy was used to measure fluctuations around the equilibrium shape of two-dimensional vacancy islands on TiN(111) terraces. From the equilibrium shape, the ratio of the two <110> step energies was found to be 0.72 +/- 0.02. Combining this with the results of an exact approach for analysis of shape fluctuations, applicable to highly...

متن کامل

Absolute orientation-dependent TiN(001) step energies from two-dimensional equilibrium island shape and coarsening measurements on epitaxial TiN(001) layers

In situ high-temperature (1030–1223 K) scanning tunneling microscopy was used to determine the equilibrium shapes of two-dimensional TiN vacancy islands on atomically smooth terraces of epitaxial TiN(0 0 1) layers. Inverse Legendre transformations of the equilibrium island shapes yield relative step energies as a function of step orientation within an orientation-independent scale factor k, the...

متن کامل

Orientation-dependent mobilities from analyses of two-dimensional TiN(111) island decay kinetics

We present a method for the determination of orientation-dependent mobilities Ceff(u) based upon analyses of the detachment-limited coarsening/decay kinetics of equilibrium-shaped two-dimensional islands. An exact analytical expression relating the orientation-dependence of Ceff(u) to that of the anisotropic step energies b(u) is derived. This provides relative values of Ceff(u) to within an or...

متن کامل

Stable Equilibria of Anisotropic Particles on Substrates: A Generalized Winterbottom Construction

We present a new approach for predicting stable equilibrium shapes of two-dimensional crystalline islands on flat substrates, as commonly occur through solid-state dewetting of thin films. The new theory is a generalization of the widely used Winterbottom construction (i.e., an extension of the Wulff construction for particles on substrates). This approach is equally applicable to cases where t...

متن کامل

ar X iv : c on d - m at / 9 50 51 22 v 1 2 5 M ay 1 99 5 Wulff Construction for Deformable Media

A domain in a Langmuir monolayer can be expected to have a shape that reflects the textural anisotropy of the material it contains. This paper explores the consequences of XY-like ordering. It is found that an extension of the Wulff construction allows for the calculation of two-dimensional domain shapes when each segment of the perimeter has an energy that depends both on its orientation and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002